Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans.

نویسندگان

  • P E Ballmer
  • M A McNurlan
  • H N Hulter
  • S E Anderson
  • P J Garlick
  • R Krapf
چکیده

Chronic metabolic acidosis has been previously shown to stimulate protein degradation. To evaluate the effects of chronic metabolic acidosis on nitrogen balance and protein synthesis we measured albumin synthesis rates and urinary nitrogen excretion in eight male subjects on a constant metabolic diet before and during two different degrees of chronic metabolic acidosis (NH4Cl 2.1 mmol/kg body weight, low dose group, and 4.2 mmol/kg body weight, high dose group, orally for 7 d). Albumin synthesis rates were measured by intravenous injection of [2H5ring]phenylalanine (43 mg/kg body weight, 7.5 atom percent and 15 atom percent, respectively) after an overnight fast. In the low dose group, fractional synthesis rates of albumin decreased from 9.9 +/- 1.0% per day in the control period to 8.4 +/- 0.7 (n.s.) in the acidosis period, and from 8.3 +/- 1.3% per day to 6.3 +/- 1.1 (P < 0.001) in the high dose group. Urinary nitrogen excretion increased significantly in the acidosis period (sigma delta 634 mmol in the low dose group, 2,554 mmol in the high dose group). Plasma concentrations of insulin-like growth factor-I, free thyroxine and tri-iodothyronine were significantly lower during acidosis. In conclusion, chronic metabolic acidosis causes negative nitrogen balance and decreases albumin synthesis in humans. The effect on albumin synthesis may be mediated, at least in part, by a suppression of insulin-like growth factor-I, free thyroxine and tri-iodothyronine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acute metabolic acidosis decreases muscle protein synthesis but not albumin synthesis in humans.

Chronic metabolic acidosis induces negative nitrogen balance by either increased protein breakdown or decreased protein synthesis. Few data exist regarding effects of acute metabolic acidosis on protein synthesis. We investigated fractional synthesis rates (FSRs) of muscle protein and albumin, plasma concentrations of insulin-like growth factor-I (IGF-I), thyroid-stimulating hormone (TSH), and ...

متن کامل

Metabolic and endocrine effects of metabolic acidosis in humans.

Metabolic acidosis is an important acid-base disturbance in humans. It is characterised by a primary decrease in body bicarbonate stores and is known to induce multiple endocrine and metabolic alterations. Metabolic acidosis induces nitrogen wasting and, in humans, depresses protein metabolism. The acidosis-induced alterations in various endocrine systems include decreases in IGF-1 levels due t...

متن کامل

Kidney protein dynamics and ammoniagenesis in humans with chronic metabolic acidosis.

To evaluate the effects of chronic metabolic acidosis on protein dynamics and amino acid oxidation in the human kidney, a combination of organ isotopic ((14)C-leucine) and mass-balance techniques in 11 subjects with normal renal function undergoing venous catheterizations was used. Five of 11 studies were performed in the presence of metabolic acidosis. In subjects with normal acid-base balance...

متن کامل

Does increasing blood pH stimulate protein synthesis in dialysis patients?

BACKGROUND Although the mechanism of muscle wasting in end-stage renal disease is not fully understood, there is increasing evidence that acidosis induces muscle protein degradation and could therefore contribute to the loss of muscle protein stores of patients on hemodialysis, a prototypical state of chronic metabolic acidosis (CMA). Because body protein mass is controlled by the balance betwe...

متن کامل

Mechanisms for defects in muscle protein metabolism in rats with chronic uremia. Influence of metabolic acidosis.

Chronic renal failure (CRF) is associated with metabolic acidosis and abnormal muscle protein metabolism. As we have shown that acidosis by itself stimulates muscle protein degradation by a glucocorticoid-dependent mechanism, we assessed the contribution of acidosis to changes in muscle protein turnover in CRF. A stable model of uremia was achieved in partially nephrectomized rats (plasma urea ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 95 1  شماره 

صفحات  -

تاریخ انتشار 1995